Nobel-díjas kísérletek középiskolásoknak

A BME Fizikusképzés Információs Portál wikiből
Nobelprizr.png

A mérési szakkör elsődleges célja, hogy a modern fizikát népszerűsítsük néhány Nobel-díjhoz kötődő kutatási területen keresztül. Ez a szakkör jellegében jelentősen eltér a tehetséggondozó mérési szakkörtől, hiszen itt nem a középiskolai versenyekre történő felkészülés a cél, hanem az, hogy bepillantást kapjatok a kutatás világába, és modern műszerekkel középiskolai szinten nem elérhető témákban kísérletezhessetek. A programot úgy állítottuk össze, hogy a mérések elején megismerkedhettek komoly laboratóriumi berendezésekkel, majd egy leegyszerűsített eszközzel önálló méréseket végezhettek az adott témához kapcsolódóan. A mérést vezető oktatók és doktoranduszok minden segítséget megadnak, hogy minden résztvevő sikeresen, és élményekben gazdagodva fejezhesse be a foglalkozásokat.

Fontos információk a szakkörrel kapcsolatban:

  • Időpontok: a szakkört péntek délutánonként, 2017. október 6-án, 13-án és 20-án tartjuk du. 3 órától 7 óráig
  • Helyszín: a BME Fizikai Intézetének F3/2/13 termében
  • Jelentkezés: a mérési szakkörre 10., 11. és 12. évfolyamos középiskolás diákokat várunk. A korábbi évek nagy érdeklődésére való tekintettel mindenki maximum két mérésre jelentkezhet. Ha még maradnak szabad helyek, a végzős diákok utólagosan jelentkezhetnek további mérésekre is, az alsóbb évesektől viszont azt kérjük, hogy ha tetszett a szakkör, akkor egy év múlva gyertek vissza a többi mérésre. A szakkörre ezen a linken jelentkezhetsz.
  • Jelentkezési határidő: legkésőbb az adott mérési alkalom előtt 4 nappal, azaz 2017. október 2., 9. és 16. éjfél.
  • Mit kell hozni? a szakkörhöz mindent eszközt és számítógépet is biztosítunk. A jegyzeteléshez hozzatok füzetet. A szakkör ingyenes.
  • További információ: kérdéseitekkel forduljatok bizalommal a szakkör szervezőjéhez, Fülöp Bálinthoz ezen a címen: .


A mérések rövid leírásai:

High tc.png
Szupravezetés

Heike Kamerlingh Onnes holland fizikus miután 1911-ben megépítette hélium cseppfolyósító berendezését, elsőként végezhetett kísérleteket az abszolút nulla fokhoz igazán közeli hőmérsékleteken. Alacsony hőmérsékleti mérései pár hónapon belül nagyon meghökkentő felfedezéshez vezettek: azt találta, hogy egy higanyszál ellenállása 4,19 K hőmérséklet alatt zérusra csökken. Késöbb kiderült, hogy számos anyag (pl. ólom, ón, alumínium) tökéletes vezetőként, úgynevezett szupvavezetőként viselkedik megfelelően alacsony hőmérsékleten. Kammerling Onnes munkáját már két évvel később, 1913-ban Nobel-díjjal jutalmazták. Ezen korai felfedetés óta a szupravezetés folyamatosan a modern fizika kiemelt témái közé tartozik. Ha csak a legelismertebb eredményeket nézzük, 1972-ben, 73-ban, 87-ben és 2003-ban osztottak ki Nobel-díjakat szupravezetéssel kapcsolatos elméleti vagy kísérleti munkákért. Ezek közül kiemelkedő technikai jelentőségű a magashőmérsékletű szupravezetőkért kiosztott Nobel-díj (1987), hiszen ekkor vált lehetővé, hogy a folyékony héliumnál lényegesen olcsóbb folyékony nitrogénben is elérhető legyen a szupravezetés.

A szupravezetést az élet számos területén alkalmazzák a mágnesesen lebegtetett vonatoktól az orvosi MRI készülékek szupravezető mágneséig. Már régóta szupravezető áramkörök alkotják az egyik legérzékenyebb mágneses tér szenzort (SQUID), és napjainkban a szupravezető nanoszerkezetek bizonyulnak a legalkalmasabbnak arra, hogy kvantumszámítógépeket építsünk.

A mérés során magashőmérsékletű szupravezetőkkel kísérletezhettek, kimérhetitek, ahogy egy szupravezető drót ellenállása nullává válik, és vizsgálhattok szupravezető gyűrűt, melyben külső feszültségforrás nélkül, csillapítatlanul kering az áram. A mágneses tér méréséhez egy másik Nobel-díjas felfedezést (2007), az ún. óriás mágneses ellenállás szenzort használhatjátok.

A mérés részletes leírását itt találjátok meg.

thumbtime=0
Mérések atomi méretskálán

Már az ókori görögök is azt feltételezték, hogy az anyag atomokból épül fel. Ezt a hipotézist a 20. század elején számos kísérlettel sikerült bizonyítani, azonban ahhoz, hogy képet tudjunk készíteni egy anyag felületén lévő atomokról egészen 1981-ig kellett várni, amikor Gerd Binnig és Heinrich Rohrer megépítették az első pásztázó alagútmikroszkópot, amiért öt évvel később Nobel-díjjal jutalmazták őket.

Az alagútmikroszkóp működése az elektronok hullámtermészetének egy speciális következményén alapul, miszerint két egymáshoz közel vitt fémdarab között akkor is folyik áram, ha azok nem érnek össze. Ezt az áramot kvantummechanikai alagútáramnak hívják, melynek érdekes tulajdonsága, hogy a két fém távolságától nagyon érzékenyen függ: ha csak egy fél atom-atom távolsággal csökkentjük a rés szélességét, akkor az áram tízszeresére nő. Ha egy ollóval elvágott fém tűt közel viszünk egy fém felülethez, akkor az alagútáram jelentős része azon egyetlen atomon keresztül folyik, mely a legközelebb van a felülethez. A mérés közben a minta felületével párhuzamosan pásztázunk a tűvel, miközben egy szabályozó áramkört használva úgy mozgatjuk a tűt a felületre merőleges irányban, hogy mindig állandó legyen a mért alagútáram, azaz a tű közel azonos távolságban mozogjon a minta felületéhez képest. A tű mozgását számítógéppel rögzítve akár atomi felbontású kép készíthető a felületről.

A mérés során megmutatjuk, hogy hogyan lehet egy teljesen saját fejlesztésű alagútmikroszkópot építeni, majd önállóan kísérletezhettek egy alagútmikroszkóphoz hasonló elrendezéssel, mellyel ugyan nem lehet háromdimenzióban pásztázni, de megmérhetitek az elképzelhető legvékonyabb nanovezeték vezetőképességét, melyben az áram egyetlen atomon keresztül folyik.

A mérés részletes leírását itt találjátok meg.

GaborDenes.jpg
Hologram.jpg
Holográfia

Gábor Dénes (1900-1979) magyar születésű villamosmérnök és fizikus fejében 1947-ben fogant meg a holográfia alapötlete: a tárgyról érkező fény nem halad át egy lencsén, amely leképezné a fényérzékeny filmre (mint az a hagyományos fényképezésben történik), hanem közvetlenül rászóródik a fényérzékeny lemezre, egy másik, ún. referencia fényhullámmal együtt. Amikor a tárgyról érkező fényhullám és a referencia fényhullám összeadódik, a fényérzékeny lemezen interferenciakép keletkezik, amely a tárgyról érkezett hullámra vonatkozó teljes, háromdimenziós információt rögzíti. A hologramfelvétel készítéséhez koherens, egyszínű fényt kiadó fényforrásra van szükség (pl. a napfény vagy az izzólámpa fénye nem alkalmas erre). Nem csoda, hogy a holográfia tudományterülete csak az 1960-as évek elejétől, a lézer feltalálásával indult igazán látványos fejlődésnek. Az a néhány év azonban, ami ekkor következett – ekkor bontakoztak ki olyan, ma is virágzó kutatási területek, mint a holografikus optikai elemek, a holografikus interferometria, a számítógépes holográfia, a reflexiós holográfia – elég volt, hogy meggyőzze a Svéd Tudományos Akadémia bizottságát: 1971-ben Gábor Dénesnek ítélték a fizikai Nobel-díjat. Azóta a holográfia még számos jelentős területtel bővült, mint pl. a holografikus adattárolás vagy a holografikus biztonságtechnika.

A látványos, háromdimenziós kép visszaadásán kívül különösen izgalmas tulajdonsága a hologramnak, hogy az információ másképp oszlik el rajta, mint a hagyományos információtároló eszközökön (pl. a fényképen, a DVD-n vagy a számítógép mágneses merevlemezén). A hologramot kis darabokra törve is minden darabban a teljes tárgyinformáció megőrződik.

A mérés során megismerkedhettek a holográfia fortélyaival, és mindenki készíthet egy hologramot magának.

A mérés részletes leírását itt találjátok meg.

LCD small.jpg
Folyadékkristályok polarizált fényben - az LCD kijelzőktől a maláriadiagnózisig

Pierre-Gilles de Gennes francia fizikus 1991-ben kapott Nobel-díjat polimerekben és folyadékkristályokban lezajló rendeződési folyamatok leírásáért. A folyadékkristály-kijelzők óriási technikai jelentősége már a Nobel-díj odaítélésekor is nyilvánvaló volt, bár akkor még távol állt a a technikai fejlettség a napjaink okostelefonjaiban vagy televízióiban használt nagy felbontású LCD kijelzőktől. (Az LCD betűszó az angol liquid crystal display kezdőbetűiből áll össze.) A folyadékkristály-cellákhoz nagyon hasonlóan működik az a műszer, amit a BME Fizikai Intézet kutatói a maláriafertőzés nagyon érzékeny kimutatására fejlesztettek ki. A maláriafertőzést okozó paraziták a vörösvértestekből hosszúkás, ún. hemozoin kristályokat hoznak létre, melyek mágneses viselkedésük miatt külső mágneses térben egy irányba rendezhetők - ezt használja ki az egyedülálló érzékenységű diagnosztikai műszer, mellyel kollégáink többek között egy, 2015-ben Nobel-díjjal is jutalmazott, maláriagyógyszer hatását vizsgálják.

A mérés első felében kísérletezve megismerhetitek, hogyan működik egy folyadékkristály-kijelző, majd kipróbálhatjátok, hogyan lehet egy mágnes és polarizált fény segítségével a maláriafertőzést jelző hemozoin kristályokat kimutatni. (A mérésen természetesen nem fertőzött vért, hanem szintetikus kristályokat használunk.)

A mérés részletes leírását itt találjátok meg.

További programok középiskolásoknak

Személyes eszközök
Névterek

Változók
Műveletek
Navigáció
Hírek és linkek
Szak- és kutatási irányok részletesen
Eszközök