Alkalmazott fizika szakirány
Az alkalmazott fizika szakirány célja olyan fizikusok képzése, akik a modern fizika módszereit alkalmazva képesek a gyakorlatban hasznosítható kutatást végezni, új technológiákat, berendezéseket és vizsgálati módszereket kifejleszteni. A képzés keretében széles alapokon nyugvó biztos fizikai, matematikai és informatikai alapismereteket szerezhetsz, elmélyítheted tudásodat a fizika és a vele határos izgalmas műszaki és természettudományok területén. Például megértheted, hogyan képes a félvezetőipar néhány négyzetcentiméternyi szilíciumon alkatrészmilliókat létrehozni. Megismerheted a korszerű anyagvizsgáló műszereket és eljárásokat, melyek segítségével parányi hibákat és szennyeződéseket is ki lehet kimutatni, és megértheted, hogy miért tudnak ilyen szennyeződések károkat, katasztrófákat okozni. Felismerheted, hogy a különböző anyagok nanométeres strukturálásával milyen merőben új elektromos, mágneses és optikai tulajdonságokat lehet létrehozni. Megtudhatod, miért különleges a lézer, és hol lehet használni. Felfedezheted, hogy a hologram nem csak egy szép háromdimenziós kép, hanem a precíziós méréstechnika és az adattárolás egy új útja. Megértheted, hogy az ultrarövid fényimpulzusok milyen távlatokat nyitnak az elemi részecskék, a szilárd testek és az élő szervezetek vizsgálatában...
A tanulás mellett lehetőséged lesz önálló kutatómunka végzésére az alkalmazott fizika számos területén. A kutatási témáinkról részletesebben a mellékelt ábrákon, a hallgatói kutatások, a kutatási hírek és az [Atomfizika Tanszék] oldalán tájékozódhatsz.
Képzésünk végzett hallgatói a fizikai jelenségek megértése mellett ismerik azok felhasználásának módszereit, valamint komoly gyakorlattal rendelkeznek műszaki és fizikai problémák megoldása terén. Ezért a régebbi mérnök-fizikus és a jelenlegi alkalmazott fizikus diploma nagyon értékes a munkaerőpiacon. A képzés során Te is olyan tudást szerezhetsz, amelyre az akadémiai és ipari kutatóintézetekben, valamint az innovatív kis- és középvállalatoknál is nagy szükség van. A már hagyományosnak számító magyar és külföldi kutatóhelyek mellett egy új elhelyezkedési lehetőség a Szegeden épülő Európai Uniós lézerfizikai kutatóintézet ([ELI – Extreme Light Infrastructure]), amely az ultrarövid impulzusú lézerek kutatásának és alkalmazásának világszinten vezető intézménye lesz. A végzett fizikusaink magyar és külföldi iparvállalatoknál is elhelyezkedhetnek, mint pl.:
- [77 Elektronika] (orvos-diagnosztikai eszközök)
- [Bosch] (anyagtudomány, szenzorok)
- [EPCOS] (passzív elektronikai alkatrészek)
- [Furukawa] (anyagtudomány, optikai kommunikáció)
- [Femtonics (mikroszkópia)]
- [General Electrics, GE] (fényforrások, orvos-diagnosztikai eszközök)
- [Holografika] (3D kijelzők)
- [Lasram] (ipari/orvosi lézeres alkalmazások)
- [Medicontur] (fiziológiai optikai eszközök)
- [Mediso] (orvos-diagnosztikai eszközök)
- [Optimal Optik] (optikai rendszerek fejlesztése)
- [Semilab] (félvezető és napelem méréstechnika)
- [Siemens] (szenzorok, robotika)
A fotó egy BME kutatás alapján nemzetközi kooperációban fejlesztett holografikus adattároló optikai rendszerét mutatja működés közben, amely a világ első, nem laboratóriumi körülmények között is működő holografikus adattároló rendszere. | A fényképen az Atomfizika Tanszék XPS/AES (röntgen-fotoelektron spektroszkópia/Auger-elektron spektroszkópia) felületanalitikai nagyberendezése látható. A berendezés alkalmas a felületi anyagösszetétel meghatározására pl. nanoszerkezetek, gázérzékelő szenzorok, gázkisülő lámpák emissziós anyaga, stb. esetén. | A fenti két kép a Femtonics Kft-vel közösen fejlesztett kétfotonos, 3D mikroszkóp működését mutatja, amellyel élő idegsejteket és az azokon terjedő ingerületet lehet vizsgálni valós időben, három dimenzióban. A mikroszkóp 3D pásztázórendszere a BME kutatásainak eredménye. | A fenti két képen az általunk fejlesztett, a növényi fotoszintézis tulajdonságait optikai módszerrel mérő vezetékes és vezeték nélküli szenzorok láthatók, amelyeket EU projektek keretében növénynemesítési kutatásokra használnak. |