Próbalap

A BME Fizikusképzés Információs Portál wikiből
A lap korábbi változatát látod, amilyen Halbritt (vitalap | szerkesztései) 2013. október 2., 06:58-kor történt szerkesztése után volt.

A nanotechnológia jelentősen hozzájárult az elektronika fejlődéséhez. Gordon E. Moore, az Intel cég egyik alapítója 1965-ben azt a megfigyelését tette közzé, miszerint egy integrált áramkörben lévő tranzisztorok száma két évenként megduplázódik. Ez a megfigyelés egészen napjainkig teljesülni látszik, ennek megfelelően a tranzisztorok mérete szintén exponenciálisan csökkent az elmúlt évtizedekben (1. ábra). Manapság egy tranzisztor aktív tartománya mindössze ~10 nm széles. Ez a méret elméletileg még két nagyságrenddel csökkenthető, amíg elérjük az elképzelhető legkisebb, egyetlen atomból álló tranzisztorokat. A további méretcsökkentés azonban számtalan technológiai problémát vet fel, így a jelenleginél kisebb, vagy más működési elvet követő információtárolási és feldolgozási technológiák kidolgozása világszerte intenzív kutatások tárgyát képezi. Ennek megfelelően a nanofizikai kutatások túlmutatnak az érdekes jelenségek feltérképezésén, és alapvetően hozzájárulnak a jövő technológiáinak kidolgozásához.

Moore.png
1. ábra. Tipikus méretskálák és a DRAM generációk exponenciális méretcsökkenését szemléltető Moore-törvény.

A következőkben rövid betekintést nyújtunk a nanoáramkörök illetve különböző nanoszerkezetek készítésének és vizsgálatának eszköztárába.

Pásztázó alagútmikroszkóp (Scanning Tunneling Microscope - STM)


Már az ókori görögök is azt feltételezték, hogy az anyag atomokból épül fel. Ezt a feltételezést a 20. század elején számos kísérlettel sikerült bizonyítani, azonban ahhoz, hogy képet tudjunk készíteni egy anyag felületén lévő atomokról egészen 1981-ig kellett várni, amikor is Gerd Binnig és Heinrich Rohrer megépítették az első pásztázó alagútmikroszkópot. Találmányukért fizikai Nobel-díjat kaptak 1986-ban. Azóta az alagútmikroszkóp széleskörben elterjedt, manapság a nanofizikai kutatások egyik alapvető vizsgálati eszközei közé tartozik.

Működésének elve az alagúteffektuson alapul: egy hegyes tűt nm-es távolságra pozícionálunk a vizsgált minta felületéhez, a tűre feszültséget kapcsolunk, ennek hatására alagútáram folyik a tű és a minta között:

\[I \propto V_b \cdot \mathrm{Exp}\left\{-A\cdot  d\cdot \sqrt{\Phi} \right\},\]

ahol \setbox0\hbox{$V_b$}% \message{//depth:\the\dp0//}% \box0% a tű és a minta közé kapcsolt feszültség, \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% a minta-tű távolság, \setbox0\hbox{$\Phi$}% \message{//depth:\the\dp0//}% \box0% a kilépési munka valamint \setbox0\hbox{$A=1.025\;\mathrm{\AA\;}^{-1}eV^{-1/2}$}% \message{//depth:\the\dp0//}% \box0% egy állandó. Az alagútáram exponenciális függése a minta-tű távolságtól rendkívül pontos mérést tesz lehetővé: ha mindössze \setbox0\hbox{$1\;\AA$}% \message{//depth:\the\dp0//}% \box0%-el, azaz körülbelül fél atomnyi távolsággal, megnöveljük a minta-tű távolságot, az áram a tizedére csökken.


STM approach.ogv
2. ábra. STM tű közelítése a felülethez, forrás: Magyarkuti András diploma előadás, BME Fizika Tanszék, 2013.

A mérés kezdetén a 2. ábrán látható módon addig közelítjük a tűt a minta felületéhez, míg az alagútáram el nem éri a - tipikusan \setbox0\hbox{$nA$}% \message{//depth:\the\dp0//}% \box0%-es nagyságrendű - kívánt értéket. Alagútmikroszkóppal két különböző módon végezhetünk méréseket. A konstans áram üzemmódot használják leggyakrabban (3. ábra), ehhez a minta felületével párhuzamosan pásztázunk a tűvel miközben egy szabályozó áramkört használva úgy mozgatjuk a tűt a felületre merőleges irányban, hogy mindig állandó legyen a mért alagútáram, azaz a tű közel azonos távolságban mozogjon a minta felületéhez képest. Ilyen módon akár atomi felbontással letapogatható a minta topográfiája.

STM feedback.ogv
3. ábra. Pásztázás a minta felett: topográfia felvétele konstans áram üzemmódban, forrás: Magyarkuti András diploma előadás, BME Fizika Tanszék, 2013.

A másik üzemmód a konstans magasság üzemmód (4. ábra), ehhez a szabályozást kikapcsolva, a tűt állandó magasságban tartva pásztázunk a felület felett. A mért alagútáramból meghatározható a minta topográfiája. Ez az üzemmód gyors pásztázási sebességet tesz lehetővé, ami többek között akkor lehet hasznos, ha valamilyen lassú időbeli változást - például hőtágulás miatti csúszást - kell kiküszöbölni. Ahhoz, hogy ezt a mérési módot alkalmazhassuk, a mintának kellőképpen simának kell lennie és a tűt elegendően távol kell tartanunk, hogy ne ütközzön a felületbe.

STM scan noFeedback.ogv
4. ábra. Pásztázás a minta felett: topográfia felvétele konstans magasság üzemmódban, forrás: Magyarkuti András diploma előadás, BME Fizika Tanszék, 2013.

Az alagútáram exponenciális távolságfüggése lehetővé teszi, hogy akár egy ollóval hegyezett tűvel is készíthetünk jó minőségű STM képet. Az alábbi ábrák egy grafit minta felületének valamint egy szén nanocsőnek az atomi felbontású képét mutatják be.

HOPG atomic.png
5. ábra. Atomi felbontású STM kép grafit minta felületéről, forrás: Magyarkuti András diplomamunka, BME Fizika Tanszék, 2013.
Chiraltube.gif
6. ábra. Szén nanocső atomi felbontású képe, forrás: Wikipedia


Az STM tű nem csak a képalkotásra, hanem a minta felületének atomi felbontású manipulációjára is alkalmas: a tű segítségével atomokat lehet mozgatni a felületen. Ezzel a technikával hozták létre a 7. ábrán látható kör alakzatot, amit 48 vas atom alkot egy réz felületen. Az alagútmikroszkópos felvételen jól megfigyelhetőek a kör belsejében kialakuló állóhullámok ("Quantum corral").

Quantum corral.jpg
7. ábra. Elektron-állóhullámok egy atomokból kirakott kör belsejében, forrás: Wikipedia

Egy másik, hasonló kísérlet során 36 kobalt atomból álló ellipszist hoztak létre, aminek az egyik fókuszpontjába egy kobalt atomot helyeztek. Az elektronok hullámtermészetének köszönhetően az ellipszis másik fókuszpontjában is mérhető a kobalt atom hatása. 1

Az STM legnagyobb hátránya, hogy csak elektromosan vezető felületeket vizsgálhatunk vele. Szigetelő felületek vizsgálatára fejlesztették ki az atomerő mikroszkópot.

Személyes eszközök
Névterek

Változók
Műveletek
Navigáció
Hírek és linkek
Szak- és kutatási irányok részletesen
Eszközök