„Próbalap kísérletek” változatai közötti eltérés

A BME Fizikusképzés Információs Portál wikiből
(Következő alkalmak)
(Következő alkalmak)
36. sor: 36. sor:
 
|<span style="font-size: 150%">Mérések atomi méretskálán</span>
 
|<span style="font-size: 150%">Mérések atomi méretskálán</span>
  
Gábor Dénes (1900-1979) magyar születésű villamosmérnök és fizikus fejében 1947-ben fogant meg a holográfia alapötlete: a tárgyról érkező fény nem halad át egy lencsén, amely  leképezné a fényérzékeny filmre (mint az a hagyományos fényképezésben történik), hanem közvetlenül rászóródik a fényérzékeny lemezre, egy másik, ún. referencia fényhullámmal együtt. Amikor a tárgyról érkező fényhullám és a referencia fényhullám összeadódik, a fényérzékeny lemezen interferenciakép keletkezik, amely a tárgy érkezett hullámra vonatkozó teljes, háromdimenziós információt rögzíti.  
+
Már az ókori görögök is azt feltételezték, hogy az anyag atomokból épül fel. Ezt a feltételezést a 20. század elején számos kísérlettel sikerült bizonyítani azonban ahhoz, hogy képet tudjunk készíteni egy anyag felületén lévő atomokról egészen 1981-ig kellett várni, amikor is Gerd Binnig és Heinrich Rohrer megépítették az első pásztázó alagútmikroszkópot.
A hologramfelvétel készítéséhez koherens, egyszínű fényt kiadó fényforrásra van szükség (pl. a napfény vagy az izzólámpa fénye nem alkalmas erre). Nem csoda, hogy a holográfia tudományterülete csak az 1960-as évek elejétől, a lézer feltalálásával indult igazán látványos fejlődésnek. Az a néhány év azonban, ami ekkor következett – ekkor bontakoztak ki olyan, ma is virágzó kutatási területek, mint a holografikus optikai elemek, a holografikus interferometria, a számítógépes holográfia, a reflexiós holográfia – elég volt, hogy meggyőzze a Svéd Tudományos Akadémia bizottságát: 1971-ben Gábor Dénesnek ítélték a fizikai Nobel-díjat. Azóta a holográfia még számos jelentős területtel bővült, mint pl. a holografikus adattárolás vagy a holografikus biztonságtechnika.
+
Működésének elve az alagúteffektuson alapul: egy hegyes tűt nm-es távolságra pozícionálunk a vizsgált minta felületéhez, a tűre feszültséget kapcsolunk, ennek hatására alagútáram folyik a tű és a minta között.
 
+
Az alagútáram exponenciális függése a minta-tű távolságtól rendkívül pontos mérést tesz lehetővé: ha mindössze $1\;\AA$-el, azaz körülbelül fél atomnyi távolsággal, megnöveljük a minta-tű távolságot, az áram a tizedére csökken. minta felületével párhuzamosan pásztázunk a tűvel miközben egy szabályozó áramkört használva úgy mozgatjuk a tűt a felületre merőleges irányban, hogy mindig állandó legyen a mért alagútáram, azaz a tű közel azonos távolságban mozogjon a minta felületéhez képest. Ilyen módon akár atomi felbontással letapogatható a minta topográfiája.
A látványos, háromdimenziós kép visszaadásán kívül különösen izgalmas tulajdonsága a hologramnak, hogy az információ másképp oszlik el rajta, mint a hagyományos információtároló eszközökön (pl. a fényképen, a DVD-n vagy a számítógép mágneses merevlemezén). A hologramot kis darabokra törve is minden darabban a teljes tárgyinformáció megőrződik. Tanszékünkön lehetőségetek van reflexiós látványhologram készítésére, és többek között a holografikus információtárolás ezen érdekes tulajdonságának megfigyelésére is.
+
 
|}
 
|}
  

A lap 2013. szeptember 13., 13:48-kori változata

Nobelprizr.png
Az újságok évről évre tájékoztatnak minket a legújabb fizikai Nobel-díj témájáról, az azonban kevésbé közismert, hogy a Nobel-díjjal jutalmazott kutatások mennyire átszövik mindennapi életünket a mobiltelefon különböző alkatrészeitől kezdve az energiatermelésen át orvosi alkalmazásokig. Ráadásul napjainkban a felfedezés és az alkalmazás között eltelt idő is meglepően rövid, például egy jó nanoelektronikai ötlet akár pár év alatt bekerülhet az újgenerációs számítógépekbe.

Előadásunkon Nobel-díjas ötletek példáján keresztül szeretnénk bemutatni, hogy érdemes fizikával foglalkozni, hiszen az elműlt évtizedekben megtapasztalt hihetetlen technológiai fejlődés is jelentős mértékben fizikusok kutatólaboratóriumaiból indult, és egy jól képzett fizikus jelentős hozzájárulást adhat a jövő technológiáinak kifejlesztéséhez.

Előadássorozatunkraelsősorban középiskolás diákokat és fizikatanárjaikat várjuk. Az alőadásokra a ... címen lehet regisztrálni.

Következő alkalmak

GaborDenes.jpg
Hologram.jpg
Holográfia

Gábor Dénes (1900-1979) magyar születésű villamosmérnök és fizikus fejében 1947-ben fogant meg a holográfia alapötlete: a tárgyról érkező fény nem halad át egy lencsén, amely leképezné a fényérzékeny filmre (mint az a hagyományos fényképezésben történik), hanem közvetlenül rászóródik a fényérzékeny lemezre, egy másik, ún. referencia fényhullámmal együtt. Amikor a tárgyról érkező fényhullám és a referencia fényhullám összeadódik, a fényérzékeny lemezen interferenciakép keletkezik, amely a tárgy érkezett hullámra vonatkozó teljes, háromdimenziós információt rögzíti. A hologramfelvétel készítéséhez koherens, egyszínű fényt kiadó fényforrásra van szükség (pl. a napfény vagy az izzólámpa fénye nem alkalmas erre). Nem csoda, hogy a holográfia tudományterülete csak az 1960-as évek elejétől, a lézer feltalálásával indult igazán látványos fejlődésnek. Az a néhány év azonban, ami ekkor következett – ekkor bontakoztak ki olyan, ma is virágzó kutatási területek, mint a holografikus optikai elemek, a holografikus interferometria, a számítógépes holográfia, a reflexiós holográfia – elég volt, hogy meggyőzze a Svéd Tudományos Akadémia bizottságát: 1971-ben Gábor Dénesnek ítélték a fizikai Nobel-díjat. Azóta a holográfia még számos jelentős területtel bővült, mint pl. a holografikus adattárolás vagy a holografikus biztonságtechnika.

A látványos, háromdimenziós kép visszaadásán kívül különösen izgalmas tulajdonsága a hologramnak, hogy az információ másképp oszlik el rajta, mint a hagyományos információtároló eszközökön (pl. a fényképen, a DVD-n vagy a számítógép mágneses merevlemezén). A hologramot kis darabokra törve is minden darabban a teljes tárgyinformáció megőrződik. Tanszékünkön lehetőségetek van reflexiós látványhologram készítésére, és többek között a holografikus információtárolás ezen érdekes tulajdonságának megfigyelésére is.

Következő alkalmak

STM feedback.ogv
Mérések atomi méretskálán

Már az ókori görögök is azt feltételezték, hogy az anyag atomokból épül fel. Ezt a feltételezést a 20. század elején számos kísérlettel sikerült bizonyítani azonban ahhoz, hogy képet tudjunk készíteni egy anyag felületén lévő atomokról egészen 1981-ig kellett várni, amikor is Gerd Binnig és Heinrich Rohrer megépítették az első pásztázó alagútmikroszkópot. Működésének elve az alagúteffektuson alapul: egy hegyes tűt nm-es távolságra pozícionálunk a vizsgált minta felületéhez, a tűre feszültséget kapcsolunk, ennek hatására alagútáram folyik a tű és a minta között. Az alagútáram exponenciális függése a minta-tű távolságtól rendkívül pontos mérést tesz lehetővé: ha mindössze $1\;\AA$-el, azaz körülbelül fél atomnyi távolsággal, megnöveljük a minta-tű távolságot, az áram a tizedére csökken. minta felületével párhuzamosan pásztázunk a tűvel miközben egy szabályozó áramkört használva úgy mozgatjuk a tűt a felületre merőleges irányban, hogy mindig állandó legyen a mért alagútáram, azaz a tű közel azonos távolságban mozogjon a minta felületéhez képest. Ilyen módon akár atomi felbontással letapogatható a minta topográfiája.

Következő alkalmak

High tc.png
Szupravezetés

Gábor Dénes (1900-1979) magyar születésű villamosmérnök és fizikus fejében 1947-ben fogant meg a holográfia alapötlete: a tárgyról érkező fény nem halad át egy lencsén, amely leképezné a fényérzékeny filmre (mint az a hagyományos fényképezésben történik), hanem közvetlenül rászóródik a fényérzékeny lemezre, egy másik, ún. referencia fényhullámmal együtt. Amikor a tárgyról érkező fényhullám és a referencia fényhullám összeadódik, a fényérzékeny lemezen interferenciakép keletkezik, amely a tárgy érkezett hullámra vonatkozó teljes, háromdimenziós információt rögzíti. A hologramfelvétel készítéséhez koherens, egyszínű fényt kiadó fényforrásra van szükség (pl. a napfény vagy az izzólámpa fénye nem alkalmas erre). Nem csoda, hogy a holográfia tudományterülete csak az 1960-as évek elejétől, a lézer feltalálásával indult igazán látványos fejlődésnek. Az a néhány év azonban, ami ekkor következett – ekkor bontakoztak ki olyan, ma is virágzó kutatási területek, mint a holografikus optikai elemek, a holografikus interferometria, a számítógépes holográfia, a reflexiós holográfia – elég volt, hogy meggyőzze a Svéd Tudományos Akadémia bizottságát: 1971-ben Gábor Dénesnek ítélték a fizikai Nobel-díjat. Azóta a holográfia még számos jelentős területtel bővült, mint pl. a holografikus adattárolás vagy a holografikus biztonságtechnika.

A látványos, háromdimenziós kép visszaadásán kívül különösen izgalmas tulajdonsága a hologramnak, hogy az információ másképp oszlik el rajta, mint a hagyományos információtároló eszközökön (pl. a fényképen, a DVD-n vagy a számítógép mágneses merevlemezén). A hologramot kis darabokra törve is minden darabban a teljes tárgyinformáció megőrződik. Tanszékünkön lehetőségetek van reflexiós látványhologram készítésére, és többek között a holografikus információtárolás ezen érdekes tulajdonságának megfigyelésére is.

Személyes eszközök
Névterek

Változók
Műveletek
Navigáció
Hírek és linkek
Szak- és kutatási irányok részletesen
Eszközök